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I. INTRODUCTION 

In the last few years, there was a lot of controversy regarding one of the fundamental properties of the 

perpendicular STT-MRAM: thermal stability of the free layer. The two standard measurements of thermal 

stability of a single MRAM cell rely on accelerating the switching rate by either application of the magnetic 

field (field-driven switching) or current (current-driven switching) of various amplitude and study of 

switching rate as a function of the amplitude of the field (or current) and subsequent application of 

macrospin-based model to extract the value of thermal stability. These measurements result in thermal 

stability, which is almost constant as a function of diameter above 30-40 nm [1,2] in contrast to expected 

increase of Δ (e.g. as demonstrated by NEB (Nudged Elastic Band) modeling)[3]. A lot of effort was spent 

on solving this paradox, mostly focusing on modification of the underlying model (e.g. “effective nucleation 

volume” picture). An important discovery was chip measurements at elevated temperatures without 

application of magnetic field or current that showed Δ increasing with size for all studied dimensions [4]. 

The same study also demonstrated that application of the field to accelerate the switching results in flat 

dependence of delta on the size, which was associated with artifact coming from using the macrospin model 

to describe non-macrospin behavior [4]. In our work, we evaluate the behavior of thermal stability obtained 

by current-driven switching using either quadratic or linear anzats [5] and compare the results to Δ obtained 

by Nudged Elastic Band (NEB) modeling[3] and discuss the limitations of the macrospin model. 
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II. DELTA DEPENDENCE ON THE CURRENT 

For in-plane STT-MRAM structures, it was shown that the switching current at long pulses depends in 

the following way on the pulse width tp and Δ [6]: 

 𝐽𝑐(𝑡𝑝) = 𝐽𝑐0 (1 −
1

∆
𝑙𝑛(𝑡𝑝𝑓0)) (1) 

This equation was used as a standard way to extract both Δ and the critical switching current density Jc0 

for in-plane structures by measuring Jc (tp) at tp >> 1 ns. It was inferred that this equation also holds for 

perpendicular free layer and is still used by many research groups. In our previous work [5], we used brute-

force macrospin modeling and showed that the above approach would give underestimation of both Δ and 

Jc0 and instead the following dependence should be used [5]: 

 𝐽𝑐(𝑡𝑝) = 𝐽𝑐0(1 −
1

√∆
√𝑙𝑛(𝑡𝑝𝑓0)) (2) 

which should give the correct Δ and Jc0. This was in agreement with prior theoretical work by others [7,8,9]. 

The above formula still assumes the free layer to behave as a single moment (macrospin assumption). In this 

work, we perform micromagnetic modeling to evaluate the limitations of the above approach and discuss 

some of the important implications of non-homogeneity of spin-torque driven switching. 

III. MICROMAGNETIC MODELING 

We used GPU-based micromagnetic code (not macrospin) to simulate a thermally-driven switching of a 

single MTJ cell as a function of the applied current. To speed-up the simulation, only the free layer is 
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modeled. The system is relaxed (at room temperature without the current) for 20 ns and then rectangular 

current pulse is applied of various pulse width, followed by relaxation for 20 more ns. The probability of the 

switching is calculated by repeating the simulation a number of times and counting the number of times the 

free layer has switched. Then, we used the above eq. (1) and (2) to obtain Δ1 and Δ2 respectively. 

To get thermal stability factor ΔNEB by other means we used Nudged Elastic Band (NEB) method to get 

the minimum energy barrier connecting two equilibrium states. This method is based on connecting the two 

states with a series of images of magnetization states and moving the images while preserving the equal 

distance between them along the local energy gradient to find the switching trajectory that has the smallest 

energy barrier. This energy barrier should properly account for any non-homogeneity during thermally-

activated switching. We found that for typical parameters (Aex = 1 erg/cm, MS = 1000-1200 emu/cc, thickness 

between 1.0 and 2.0 nm), the free layer switches by domain wall propagation and the energy barrier varies 

roughly proportional to the diameter of the cell. When the diameter becomes smaller than 10-15 nm, quasi-

uniform rotation becomes the primary switching mechanism since formation of the domain wall at these 

sizes is no longer energetically favorable. 

Then, we will compare Δ1 and Δ2 to the ΔNEB and discuss the impact of the findings and important artifacts 

related to macrospin assumption used in eq. (1) and (2). 
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