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I. INTRODUCTION 

The manipulation of magnetization using electrical approaches allows us to realize energy-efficient and 

high performance spintronic devices. Conventional approach using a torque derived from spin-polarized 

current has created novel magnetic memory and logic devices, such as spin-transfer-torque 

magnetoresistive random access memory (STT-MRAM).[1] Recently, a new magnetization switching 

mechanism has emerged which is known as spin-orbit torque (SOT) switching. An in-plane current 

injected into a nonmagnetic layer (NM)/ferromagnet (FM) heterostructure with NM having large spin-orbit 

coupling, generates spin-current in the vertical direction. SOT induced magnetization switching has 

attracted much attention. Field-free SOT induced magnetization switching has been realized and 

demonstrated for in-plane magnetized MTJs. For memory applications, materials with perpendicular 

magnetic anisotropy (PMA) have advantages in terms of better thermal stability, improved scalability and 

faster switching.[1] However, SOT induced magnetization switching for materials with PMA requires 

breaking the symmetry with an in-plane field, which is an obstacle for practical applications. Up to now, a 

few efforts have been made to realize f ield-free SOT induced magnetization switching of materials with 

PMA in a bilayer system, either using a thin Co(Fe), CoFeB layer with interfacial PMA, or using Co/Ni 

multilayers.[2-8] All of these stacks are ferromagnets with large saturation magnetization (Ms). Recently, 

SOT induced switching has also been realized in TbFeCo with bulk PMA.[9] Here, we show a novel 

composite stack of CoFeB/Gd/CoFeB layers combined with antiferromagnetic PtMn as spin Hall channel, 

which show the good bulk PMA and low Ms.[10] Current induced SOT switching has been demonstrated 

in the absence of external magnetic field with reduced switching current density both in a bilayer and in a 

perpendicular magnetic tunnel junction (MTJ) structure. 

II. EXPERIMENTAL DETAILS 

Films were deposited onto a thermally oxidized silicon wafer at room temperature (RT) in a six-target 

Shamrock sputter tool. The layer structure of the bilayer film is (from bottom to top) Ta 5/Pt50Mn50 (PtMn) 

10/Co20Fe60B20 (CoFeB) 0.6/Gd 1.2/CoFeB 1.1/MgO 2/Ta 2 (thickness in nm). For the MTJs, the layer 

structure is Ta 5/PtMn 10/CoFeB 0.6/Gd 1.2/CoFeB 1.1/MgO 2/CoFeB 1.4/Ta 5 (in nm). The thickness of 

each layer was optimized to achieve a good PMA. All the films were patterned into Hall-bar devices using 

a standard photolithography and ion milling process to perform SOT switching measurement. Then the 

Hall bar devices were annealed at 300 oC for half an hour under a field of 5 kOe along the current channel 

direction to set an in-plane exchange bias. All measurements were performed at RT. The width of the 

current channel in the Hall bar devices was either 6 m or 12 m. 

III. RESULTS AND DISCUSSIONS 

   The hysteresis loops with sweeping fields in the out-of-plane and in-plane directions for an 

un-patterned bilayer film after the same annealing condition were measured, as shown in Fig. 1(b), and 

show a good PMA and weak in-plane exchange bias (Hex ~ 22 Oe), induced from the PtMn/CoFeB 

interface. The Ms is as low as ~ 370±20 emu/cm3, because the CoFeB and Gd layers are 

antiferromagnetically exchange-coupled with each other. Field-free SOT switching was observed in this 

bilayer structure, as shown in Fig. 1(c), where the switching current density was about ~ 9.6×106 A/cm2. 

The spin Hall angle of PtMn was determined to be ~ 0.084±0.005 by performing a second harmonic Hall 

measurement. Besides, SOT induced switching was also observed in a perpendicular MTJs with good 

tunneling magnetoresistance (TMR) at zero external magnetic field, as shown in Fig. 2(b-c). Our structures 

are well compatible with perpendicular MTJs due to the use of CoFeB, which could realize field-free 

three-terminal perpendicular MTJs and lead the application of novel SOT-MRAM.  
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Fig. 1. SOT switching of CoFeB/Gd/CoFeB layers with PtMn spin Hall channel. (a) An optical micrograph 

of the fabricated Hall bar device and measurement configuration. (b) Out-of-plane and in-plane hysteresis 

loops of un-patterned CoFeB/Gd/CoFeB film with same field annealing condition, which shows MS is 

about 370±20 emu/cm3 and in-plane exchange bias field is about ~ 22 Oe. The inset is the enlarged 

hysteresis loops, to show the clear exchange bias field. (c) The Hall resistance (RAHE) with sweeping 

channel current under various in-plane external magnetic field (Hx) for a 6-m-wide Hall bar device in our 

CoFeB/Gd/CoFeB stacks. 

 

 

Fig. 2. SOT switching in a perpendicular MTJs. (a) Schematic of perpendicular MTJ structure used in our 

experiment. (b) Typical tunneling magnetoresistance (TMR) loops with perpendicular magnetic field after 

different annealing conditions. (c) Field-free SOT switching a perpendicular MTJ stack in a Hall-bar 

device.    


