Field-free spin orbit torque switching of perpendicular antiferromagnet/ferrimagnet structures for SOT-MRAM

Jun-Yang Chen¹, Mahendra DC² and Jian-Ping Wang^{1,2}

Department of Electrical and Computer Engineering, University of Minnesota, MN 55455
School of Physics and Astronomy, University of Minnesota, MN 55455

I. INTRODUCTION

The manipulation of magnetization using electrical approaches allows us to realize energy-efficient and high performance spintronic devices. Conventional approach using a torque derived from spin-polarized current has created novel magnetic memory and logic devices, such as spin-transfer-torque magnetoresistive random access memory (STT-MRAM).[1] Recently, a new magnetization switching mechanism has emerged which is known as spin-orbit torque (SOT) switching. An in-plane current injected into a nonmagnetic layer (NM)/ferromagnet (FM) heterostructure with NM having large spin-orbit coupling, generates spin-current in the vertical direction. SOT induced magnetization switching has attracted much attention. Field-free SOT induced magnetization switching has been realized and demonstrated for in-plane magnetized MTJs. For memory applications, materials with perpendicular magnetic anisotropy (PMA) have advantages in terms of better thermal stability, improved scalability and faster switching.[1] However, SOT induced magnetization switching for materials with PMA requires breaking the symmetry with an in-plane field, which is an obstacle for practical applications. Up to now, a few efforts have been made to realize field-free SOT induced magnetization switching of materials with PMA in a bilayer system, either using a thin Co(Fe), CoFeB layer with interfacial PMA, or using Co/Ni multilayers. [2-8] All of these stacks are ferromagnets with large saturation magnetization (M_s). Recently, SOT induced switching has also been realized in TbFeCo with bulk PMA.[9] Here, we show a novel composite stack of CoFeB/Gd/CoFeB layers combined with antiferromagnetic PtMn as spin Hall channel, which show the good bulk PMA and low $M_{\rm s}$.[10] Current induced SOT switching has been demonstrated in the absence of external magnetic field with reduced switching current density both in a bilayer and in a perpendicular magnetic tunnel junction (MTJ) structure.

II. EXPERIMENTAL DETAILS

Films were deposited onto a thermally oxidized silicon wafer at room temperature (RT) in a six-target Shamrock sputter tool. The layer structure of the bilayer film is (from bottom to top) Ta $5/Pt_{50}Mn_{50}$ (PtMn) $10/Co_{20}Fe_{60}B_{20}$ (CoFeB) 0.6/Gd 1.2/CoFeB 1.1/MgO 2/Ta 2 (thickness in nm). For the MTJs, the layer structure is Ta 5/PtMn 10/CoFeB 0.6/Gd 1.2/CoFeB 1.1/MgO 2/CoFeB 1.4/Ta 5 (in nm). The thickness of each layer was optimized to achieve a good PMA. All the films were patterned into Hall-bar devices using a standard photolithography and ion milling process to perform SOT switching measurement. Then the Hall bar devices were annealed at 300 °C for half an hour under a field of 5 kOe along the current channel direction to set an in-plane exchange bias. All measurements were performed at RT. The width of the current channel in the Hall bar devices was either 6 µm or 12 µm.

III. RESULTS AND DISCUSSIONS

The hysteresis loops with sweeping fields in the out-of-plane and in-plane directions for an un-patterned bilayer film after the same annealing condition were measured, as shown in Fig. 1(b), and show a good PMA and weak in-plane exchange bias ($H_{ex} \sim 22$ Oe), induced from the PtMn/CoFeB interface. The M_s is as low as ~ 370±20 emu/cm³, because the CoFeB and Gd layers are antiferromagnetically exchange-coupled with each other. Field-free SOT switching was observed in this bilayer structure, as shown in Fig. 1(c), where the switching current density was about ~ 9.6×10^6 A/cm². The spin Hall angle of PtMn was determined to be ~ 0.084 ± 0.005 by performing a second harmonic Hall measurement. Besides, SOT induced switching was also observed in a perpendicular MTJs with good tunneling magnetoresistance (TMR) at zero external magnetic field, as shown in Fig. 2(b-c). Our structures are well compatible with perpendicular MTJs due to the use of CoFeB, which could realize field-free three-terminal perpendicular MTJs and lead the application of novel SOT-MRAM.

Jun-Yang Chen E-mail: jychen@umn.edu tel: +1-612-6257808

REFERENCES

- 1) J. P. Wang et al.; Proceedings of the 54th Annual Design Automation Conference (2017).
- 2) G Yu et al.; Nature Nanotech. 9, 548 (2014).
- 3) L. You et al.; Proc. Nat. Aca. Sci. USA, 112, 10310 (2015).
- 4) Y. C. Lau et al.; Nature Nanotech. 11, 758 (2016).
- 5) A. K. Smith *et al.*; *arXiv*: 1603. 09624 (2016).
- 6) S. Fukami *et al.*; *Nature Materials* **15**, 535 (2016).
- 7) Y. W. Oh, et al.; *Nature Nanotech.* **11**, 878 (2016).
- 8) A. van den Brink et al.; Nature Comm. 7, 10854 (2016).
- 9) Z. Zhao et al.; Appl. Phys. Lett. 106, 132404 (2015).
- 10) J. Y. Chen et al.; Appl. Phys. Lett. 111, 012402 (2017).

Fig. 1. SOT switching of CoFeB/Gd/CoFeB layers with PtMn spin Hall channel. (a) An optical micrograph of the fabricated Hall bar device and measurement configuration. (b) Out-of-plane and in-plane hysteresis loops of un-patterned CoFeB/Gd/CoFeB film with same field annealing condition, which shows M_S is about 370±20 emu/cm³ and in-plane exchange bias field is about ~ 22 Oe. The inset is the enlarged hysteresis loops, to show the clear exchange bias field. (c) The Hall resistance (R_{AHE}) with sweeping channel current under various in-plane external magnetic field (H_x) for a 6-µm-wide Hall bar device in our CoFeB/Gd/CoFeB stacks.

Fig. 2. SOT switching in a perpendicular MTJs. (a) Schematic of perpendicular MTJ structure used in our experiment. (b) Typical tunneling magnetoresistance (TMR) loops with perpendicular magnetic field after different annealing conditions. (c) Field-free SOT switching a perpendicular MTJ stack in a Hall-bar device.